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Abstract
A constant-time solution of the continuous global optimization problem (GOP)
is obtained by using an ensemble algorithm. We show that under certain
assumptions, the solution can be guaranteed by mapping the GOP onto a
discrete unsorted search problem, whereupon Brüschweiler’s ensemble search
algorithm is applied. For adequate sensitivities of the measurement technique,
the query complexity of the ensemble search algorithm depends linearly on the
size of the function’s domain. Advantages and limitations of an eventual NMR
implementation are discussed.

PACS numbers: 03.67.Lx, 33.25.+k, 76.60.−k

1. The global optimization problem

Optimization problems are ubiquitous and extremely consequential. Their theoretical and
practical interest has continued to grow from the first recorded instance of Queen Dido’s
problem [1] to present day forays into complexity theory and large-scale logistics applications
(see [2–6] and references therein).

The formulation of the global optimization problem (GOP) is deceptively simple: find
the absolute minimum of a given function—called the objective function—over the allowed
range of its variables. Sometimes, the function whose global minimum is to be found is not
specified in analytic form and must be evaluated by a computer program. When we can only
access the output of the computation, the program acts as a black-box tool, called an oracle.

Of course, the brute force approach of evaluating the function on its whole domain is
either impossible if the variables are continuous, or prohibitively expensive if the variables are
discrete, but take values in large domains and in high-dimensional spaces. Since, in general,
each oracle invocation (function evaluation) involves an expensive computational process, the
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number of function evaluations needs to be kept to a minimum. It is not surprising that,
together with accuracy, this number probably provides the paramount criterion in comparing
the efficiency of competing optimization algorithms.

The primary difficulty in solving GOPs stems from the fact that the condition for
determining minima, namely annulment of the gradient of the objective function, is only
necessary (the function may have another type of critical point) and local, i.e. it does not
distinguish between local and global minima. The generic strategy to find the global minimum
involves two main operations, namely: (i) descent to a local minimum and (ii) search for
a new descent region. However, this generic strategy is powerless for certain problems.
The following one-dimensional example (the golf course problem) illustrates the difficulties.
Define the function f : [0, 1] by

f (x) =
{

0 for 0 � x � a − ε/2 and a + ε/2 � x � 1
−1 for a − ε/2 � x � a + ε/2

(1)

where 0 < ε � 1, and a is a point in the interval (ε/2, 1 − ε/2), but is otherwise unknown.
From this definition, it is clear that to find the absolute minimum of f , one should evaluate it
within the ε well-interval around the unknown point a. If this function is defined like an oracle,
i.e. if one does not know its definition above and the value of the number a, the probability
Pε of choosing the variable x within the well-like interval where f (x) = −1, is ε. In the
n-dimensional version of this problem, the probability Pε becomes εn, so the complexity of
the problem grows exponentially with n (the dimensionality curse). Moreover, knowledge
about the (partial) derivative(s) of f would not help, since they are all zero whenever defined.
In the light of this example, it seems that without additional information about the structure
of the function there is no reasonable expectation of deciding upon an efficient optimization
strategy and one is left with either strategies that have limited applicability or the exhaustive
search option.

Thus, new approaches are needed, which take advantage of additional information to
reduce the complexity of the problem to a manageable level. We emphasize that this information
is actually available in some classes of GOP—for instance it happens to be available for the golf
course problem above—but cannot be taken advantage of within conventional optimization
algorithms.

Here we present an approach that uses this information efficiently to map the continuous
GOP into a discrete search problem (DSP). Once this mapping is completed, we apply a
variant of Brüschweiler’s search algorithm, as described in the following section, to obtain a
value within the basin of attraction of the global minimum in a logarithmic number of function
evaluations that scales logarithmically with respect to the cardinality of the resulting discrete
set. While the parallelism of ensemble computing provides an ‘exponential speed-up’, it also
demands an exponentially large number of processors. Thus, we use the phrase ‘constant-time’
to account for the relationship between speed and resources.

2. Mapping the continuous GOP to a discrete search problem

Consider a real function of d variables, f (x), x = (x1, x2, . . . , xd) that has a certain degree of
smoothness. The precise definition is not critical for the argument below. Without restricting
the generality, we can assume that f is defined on [0, 1]d → [0, 1]. Assume now that: (i) there
is a unique global minimum and its value is zero; (ii) there are no local minima whose value
is infinitesimally close to zero; in other words, the values of the other minima are larger than
a constant δ > 0 and (iii) the size of the basin of attraction for the global minimum measured
at height δ is known to be rδ . We note that these assumptions can be actually verified for
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the problem at hand, if additional information is available. Also, these assumptions may in
general be relaxed to some extent, as outlined in the first part of section 4.

The implementation idea is the following. Instead of f (x), consider the function
g(x) := (f (x))1/m. For sufficiently large m, this function will take values very close to 1,
except in the vicinity of the global minimum, which will maintain its original value, namely
zero. Of course, other transformations may be used to achieve essentially the same result.
Now divide the hypercube [0, 1]d in small d-dimensional hypercubes with sides �x = 1/M ,
where M is a positive integer. At the midpoint of each of these hypercubes, define the function
h(x) := 1 − INT [g(x) + 1/2] (INT denotes the integer part).

As a result of the transformations above, we reduced the GOP to a DSP for h :
{1, 2, . . . , N} → {0, 1}, which is an integer-valued function defined on a discrete set of
N := 2n+1 points. The function h(i) is known to be zero for all inputs i, except for one special
input i = q , where h(q) = 1. Here N = Md and the domain on which the function h is zero
depends on m and on the size, rδ , of the basin of attraction of the global minimum at height
δ. Thus the problem becomes to find the value of the special input q efficiently. Recently, we
proposed an adaptation of Grover’s quantum search algorithm to solve the continuous GOP
[7], which requires O(

√
N) function evaluations [8–10].

In this letter, we propose to further improve the efficiency, by using an ensemble search
algorithm, which is described in detail in the following section. The algorithm is adapted
from Brüschweiler’s ensemble search algorithm [11, 12], using a parallel technique to achieve
exponential speedups for problems up to a certain size, dictated by the sensitivity of the
measurement process. As mentioned before, efficiency is understood in relation to the query
complexity of the algorithm. Indeed, when N is large and the function evaluation (i.e. the
oracle) is costly in terms of computational complexity, reducing the number of function
evaluations is critical.

Application of the ensemble search algorithm to the function h results in a point that
returns the value zero. It is easy to see that, by construction, this point belongs to the basin
of attraction of the global minimum. We return then to the original function f and apply the
descent technique of choice that will lead to the global minimum. If the basin of attraction
of the global minimum is narrow, the gradients of the function f may reach very large values
which may cause overshots. Once that phase of the algorithm is reached, one can apply a
scaling (dilation) transformation that maintains the descent mode but moderates the gradients.
On the other hand, as one approaches the global minimum, the gradients become very small
and certain acceleration techniques based on non-Lipschitzian dynamics may be required
[18, 19]. If the global minimum is attained at the boundary of the domain, the algorithm above
will find it without additional complications.

3. Brüschweiler’s ensemble search algorithm

Following Grover and Shor’s breakthrough algorithms for quantum computing [8, 13, 14],
an alternative paradigm for computing has been suggested by Madi, Brüschweiler and Ernst,
which operates on ensembles, i.e., mixed states of identical spin sytems, using a spin Liouville
space formalism for density operators [11]. The Liouville space for a system of n spins
contains the n × n density matrices representing all the possible quantum states of the spins.
Ensemble algorithms are not quantum algorithms, insofar as they do not involve entanglement
of quantum states, so they only use a small subset of the Liouville space. Throughout this
letter, ‘mixed states’ describe a statistical ensemble of spins, rather than individual spins, so
that each element of the ensemble performs part of the computation, in the same way as each
processor in a classical parallel computer.
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This new paradigm exploits the parallelism offered by simultaneously acting on many
different input states in an ensemble of spins. In contrast, quantum computing with pure states
relies on the parallelism of entangled states, to perform operations in a Hilbert space which is
the tensor product of multiple qubits.

The advantage of ensemble algorithms is that they may be exponentially faster than the
equivalent quantum algorithms, for adequate measurement sensitivities. Two realizations of
ensemble algorithms are provided by Brüschweiler’s search algorithm [12] and the summing
algorithm proposed by the authors [15], which illustrate the trade-off between memory and
speed capabilities.

Brüschweiler’s algorithm for searching an unsorted database uses the ensemble computing
paradigm in the context of NMR technology. The strategy employs binary partition of the N
elements in the database, to find the desired element after O(log2 N) oracle queries. We note
that the lower bound derived by Nayak and Wu [9] for the query complexity of quantum search
algorithms does not apply here, since the quantum lower bound [10] used in their derivation
assumes that the initial state is a pure state.

Ensemble computing requires an exponentially larger set of physical resources to encode
the same number of distinct input states compared to quantum computing with pure states.
On the other hand, ensemble computing holds the important advantage that it is insensitive
to the decoherence time of the spins, which is an outstanding limiting factor for quantum
computations involving entangled states.

A ‘divide and conquer’ scheme is used to test whether the special input q belongs to
exponentially finer and finer partitions of the set of input values. The algorithm is envisaged
for a physically realizable system consisting of binary-valued spins, therefore the number of
spins needed in the input register varies from n to 1, to accommodate the number of input
values in partitions ranging in size from N/2 values down to 2 values, respectively. It is also
assumed that a 1-spin output register is available, to encode the value of h ∈ {0, 1}.

The first step of the algorithm is to divide the input values into two equal partitions,
χ−

1 = {1, . . . , N/2} and χ+
1 = {N/2 + 1, . . . , N}, and test whether the special input q belongs

to χ−
1 or χ+

1 . The numerical subscript, k = 1, indicates the size of the partition as a fraction
(1/2k) of the entire set of input values, χ = {1, . . . , N}, and the superscript ± differentiates
between the lower and upper partitions.

The n-spin input register is initialized as an ensemble, namely an equally-weighted mixed
state,

ρ(n)
in = 1

N/2

∑
i∈χ−

1

|i〉n〈i|n (2)

which accounts for half of the N = 2n+1 possible input configurations. The density operator
ρ(n)

in can be represented in Liouville space by a density matrix that has non-zero elements only
on its diagonal. The off-diagonal elements are all zero, indicating the absence of quantum
coherence between any of the states |i〉n. The ket states |i〉n correspond to the eigenstates
of the Zeeman Hamiltonian created by a strong external magnetic field [16], and can also be
written in terms of individual spins,

|i〉n = |ai1〉 ⊗ |ai2〉 ⊗ · · · ⊗ |ain〉 (3)

where (ai1, ai2, . . . , ain) ∈ {0, 1} are the digits of the number (i − 1) in binary format, and ⊗
denotes the tensor product between the states. The bra states, 〈i|n, are the adjoint of the ket
states. For further convenience, the state |0〉 denotes a spin ‘up’ and the state |1〉 denotes a
spin ‘down’.

Each of the N/2 input configurations in the partition χ−
1 is realized by a sub-ensemble

which contains many identical molecules with n spins. The number of molecules in each
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sub-ensemble may vary, but the higher it is the more robust the algorithm is going to be against
random errors. Ideally, all of the molecules in each sub-ensemble are initially set to one of
the input configurations |i〉n〈i|n, and the entire sub-ensemble responds to external controls as
one ‘mega-spin’.

At room temperature, the thermal equilibrium state of an n-spin ensemble in an NMR
experiment is equal to the sum of ρ(n)

in and a traceless density matrix, with zero off-diagonal
terms [17]. The diagonal elements of the traceless density matrix are given by permutations of
Boltzmann factors, which have small magnitudes with respect to 2/N , therefore, the thermal
equilibrium state closely approximates the desired initial mixed state ρ(n)

in .
The original approach proposed in Brüschweiler’s search algorithm requires that the

output register is initially set to zero. This requirement cannot be satisfied in an NMR
implementation, as it is impossible to set all the spins in the output register to |0〉. However,
Brüschweiler’s search algorithm is still applicable, by taking the initial state to be the natural
state available in NMR: a thermal mixture of |0〉 and |1〉 spins. Thus the entire ensemble (input
and output registers) is described by ρ(n)

in ⊗ ρout,

ρ(n)
in ⊗ ρout = 1

N/2

∑
i∈χ−

1

|i〉n〈i|n ⊗ 1

2
{|0〉〈0| + |1〉〈1|}. (4)

The effect of this modification is that measurements of the output register need to distinguish
deviations from a thermal mixture, rather than from a uniform ensemble of |0〉 spins, following
application of the search algorithm.

The function h, analogous to the oracle in Grover’s search algorithm, is evaluated by
applying a reversible unitary transformation Uh defined as

Uh|i〉n ⊗ |0〉 → |i〉n ⊗ |h(i)〉 (5)

Uh|i〉n ⊗ |1〉 → |i〉n ⊗ |1〉. (6)

The transformation has no effect on the eigenstates |i〉n, but partitions the output register into
two sub-ensembles: 1/2 − 1/N of the output spins have the value |0〉, and 1/2 + 1/N of the
output spins have the value |1〉. The action of Uh on the initial mixed state can be written as

Uh

(
ρ(n)

in ⊗ ρout
)
U

†
h = 1

N/2

∑
i∈χ−

1

|i〉n〈i|n ⊗ 1

2
{|h(i)〉〈h(i)| + |1〉〈1|}. (7)

The transformation Uh can be described [12] as a permutation of all states spanned by
the input and output registers, which is applied to the system, to evaluate the function h
simultaneously on all of the input values i given by the initial state in equation (4). This is
equivalent to evaluating the function h concurrently on N/2 processors in a classical parallel
computer. In a physical implementation, Uh is the product of a sequence of fundamental
unitary transformations for each of the spins in the output register.

The effect of the transformation Uh is to create a small imbalance in the initial thermal
state of the output register. If we can detect this imbalance reliably, then the special input
value we are searching for is contained in the partition χ−

1 .
In the physical implementation of the algorithm, the output register generates an output

signal proportional to the number of spins in state |1〉. Hence the output signal will increase,
if χ−

1 does contain q, or it will remain the same, if χ−
1 does not contain q. The latter case

implies that χ+
1 must contain q. This ensemble measurement is an analogue process, which

performs a single concurrent evaluation, and serves as a definite test of whether q belongs to
χ−

1 or χ+
1 . Since only one out of N/2 input values may change the output register, under the



L404 Letter to the Editor

transformation Uh, the corresponding increase in the output signal is rather small (proportional
to 2/N).

Based upon this measurement, the partition containing q is selected and then subdivided
into two equal partitions, χ−

2 and χ+
2 . The equally-weighted mixed state ρ(n−1)

in corresponding
to the input values in χ−

2 is prepared in an (n − 1)-spin input register,

ρ(n−1)
in = 1

N/4

∑
i∈χ−

2

|i〉n〈i|n (8)

and the same approach outlined above is followed, to test if the special input q belongs to
χ−

2 or χ+
2 . We note that, from an experimental point of view, it could be more convenient

to prepare the same equally-weighted mixed state in the input register, regardless of which
partition actually contained q, and then to use this information to determine an equivalent
transformation that realizes the oracle for the appropriate partition.

Each test to determine the partition that contains q, reduces the size of the set of input
values that contains q by a factor of 2, therefore the special input value will be determined
by a series of n tests, i.e. the query complexity of the algorithm is O(log2 N). The final test
involves two equal partitions, χ−

n and χ+
n , each containing a single input value, one of which

is q.
For the first partition test, it is necessary that the measurement be able to distinguish

changes in the output signal with a precision equal to or better than 1/N . This requirement
may be gradually relaxed for subsequent tests. Indeed, at the kth test, the precision of the
measurement only needs to be equal to or better than 1/2k, and by the final test, which
determines whether q belongs to χ−

n or χ+
n , the precision has to be equal to or better than 1/2.

Of course, setting the precision to the minimum required level, 1/2k, for the kth partition test,
may provide some practical advantages in an experimental implementation, though it does not
lower the query complexity.

An additional limitation on the measurement sensitivity for the output register is the
inevitable noise present in measurements, especially due to thermal fluctuations in an NMR
implementation. As the number of sample points N = 2n+1 increases, the difference between
distinct normalized output signals in the first partition test will eventually become comparable
to the noise level. In order to reliably measure the maximum normalized output signal 1/2n

in the first partition test, we require an error level �1 � 1/2n+1. If the error level for a single
experimental trial is �1 > 1/2k (k � n), we cannot reliably measure the signal from the
output register for any of the first k − 1 partition tests, because significant differences, which
are smaller than 1/2k, cannot be detected reliably.

However, the error can be reduced by repeating the algorithm a number of times. The
error level scales inversely with the square-root of the number (Ne) of experimental trials,
�Ne

∝ 1/
√

Ne, because the variance in the measurement is inversely proportional to Ne. This
implies that to successfully implement the first partition test, we have to repeat it at least
Ne ≈ 22(n+1−k) = (N�1)

2 times. Thus the single-run query complexity of the algorithm
is O(log2 N), but the overall query complexity becomes O(Ne log2 N), due to the repeated
trials. When k ∼ n,Ne ≈ O(1), so the query complexity remains O(log2 N). However, in
the worst case, k � n, the query complexity increases to O(N2 log2 N).

4. Discussion

The optimization problem. We have shown that a broad class of GOPs can be solved in
a constant time, with a guarantee, by exploiting available additional information about the
objective function. Our approach enables us to map the GOP into a discrete search, and



Letter to the Editor L405

guarantees to find a solution for the global minimum in a constant time, by efficiently
eliminating all basins of attraction except for the basin of attraction that contains the global
minimum.

The additional information, obtained by satisfying the assumptions (i)–(iii) in section 2,
is readily available for some notoriously hard GOPs, such as the golf course problem. In
general, a certain amount of information is usually available in every application, but present
algorithms either do not or cannot use it. Sometimes, this information may be difficult to obtain,
but its benefits significantly outweigh its cost. Indeed, for high-dimensional, computationally
intensive problems, the advantage of reducing the complexity of the problem from exponential
to polynomial is extremely significant. On the other hand, if no information is available at all,
then a solution for the most general type of continuous GOP cannot be guaranteed in finite
time.

In principle, the conditions (i)–(iii) imposed on the functions f in section 2 are satisfied
can be relaxed to some extent.

Assumption (i) is satisfied by a large class of important practical problems, namely
parameter identification, pattern recognition and other classes of inverse problems. In these
problems, the absolute minimum, namely zero, is attained for the correct values of the
parameters, matching of patterns, and fitting of output to input. Assumption (i) can be
relaxed in the sense that the function may have multiple global minima, all equal to zero.
Functions with multiple global minima will simply result in search problems with multiple
‘special’ elements and can be treated accordingly.

Assumption (ii) can be replaced with the much weaker and altogether reasonable
assumption that f has a finite number of local minima. This would prevent the value of
any local minimum to be infinitesimally close to the value of the global minimum.

Assumption (iii) is the most difficult to relax in practice, since this information is crucial
in ensuring the high efficiency and guaranteed success of the algorithm. In fact, without
additional information about the size of the basin of attraction, there is no algorithm that—
applied on a general problem—can guarantee to find the global minimum in reasonable time.
Indeed, if the discretization cell is much smaller than the size rδ of the basin of attraction,
many input values will return the output zero upon the application of the oracle Uh. In order
to determine one of these input values with certainty, the ensemble search algorithm has to
be applied for the same number of steps used to find a single special input value. Any of
the determined values belong to the basin of attraction and will eventually lead to the global
minimum. On the other hand, if the discretization cell is larger than rδ, there is a chance to
miss the basin of attraction altogether. Moreover, if the basin of attraction is infinitesimally
narrow, any algorithm would require an unbounded number of evaluations.

The search algorithm. The overall query complexity of the ensemble search algorithm used
in this letter is always less than the overall query complexity for Grover’s search algorithm
implemented using NMR pseudopure states [17], which is O(N2

√
N). However, the ensemble

search algorithm is less efficient than the (theoretical) implementation of Grover’s search
algorithm using pure states, for database sizes above a certain threshold value, which is
determined by the error level. Brüschweiler [12] estimates that his algorithm is more efficient
only for databases of size N fulfilling the condition

N
√

N log2 N < �−2
1 . (9)

We note that it is appropriate to make the above comparisons, since adding more quantum
processors in an attempt to parallelize Grover’s search method does not achieve any further
reduction in complexity.
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In addition, ensemble algorithms do not require quantum coherence, thus they are more
robust and demand less additional resources than quantum algorithms. For example, in an
NMR implementation, quantum algorithms need to finish within the T2 decoherence time
of the system. This requirement is much more stringent than that for NMR ensemble
algorithms, which only need to finish within the thermal relaxation time T1 ≈ 50–1000T2

[16, 17].
To date, Brüschweiler’s search algorithm has been implemented experimentally by

two separate groups [20, 21], both using a three-qubit NMR ensemble system. While a
database size up to N = 8 is not very impressive, these experiments have demonstrated
that the algorithm is based on sound principles. Both groups have improved on the
original form of the algorithm, by either using measured spectra [20] to read out the
ensemble average of the output register, or by completely removing the need for the output
register [21], and using a modified oracle transformation, so that the algorithm becomes
irreversible. These modifications make the algorithm more robust, and easier to realize,
respectively, but they do not change the query complexity results we presented in section 3.
Other searches in NMR ensemble computing have also been proposed and implemented
[22, 23].

However, we note that a number of important experimental issues remain to be addressed,
before the algorithm can be scaled up to very large numbers of spins. These issues include
finding suitable molecules with n > 3 nuclear spins, designing the sequence of pulses that
implements the oracle transformation Uh efficiently, given that the interaction of remote nuclear
spins is very weak, and enhancing the measurement sensitivity for large ensemble systems.
The point of this proposal is proof-of-principle, which may eventually lead to something
practical once NMR technology develops significantly.

The SNR for a single measurement is currently 104–107 depending on the type of nuclei
used [24], and the strength of the applied magnetic field. Taking the best corresponding value
for the error level, �1 ≈ 10−7, the ensemble search algorithm is more efficient than Grover’s
search algorithm using pure states, for database sizes up to N ≈ 108, which corresponds to
an input register of n ≈ 27 qubits. This threshold size is already of practical interest, and
will increase in the future, as the error level decreases with advances in NMR technology.
The enhancement of measurement sensitivity in NMR implementations is presently being
investigated by a large number of research groups, which are aiming to decrease the error level
by some constant factor. In the future, high-sensitivity methods from other fields such as optical
sensing of ultra-weak signals [25] using injection-locked lasers may also be adapted to NMR
experiments.

5. Conclusion

In this letter we have shown that additional information about the objective function can be
used to reduce the complexity of the GOP to manageable levels, thus guaranteeing that the
correct solution will be found. Conventional classical algorithms cannot take advantage of
this information and quantum algorithms yield only a polynomial reduction in complexity.
In contrast, ensemble algorithms hold the prospect of solving the continuous GOP in a
constant time. For a restricted number of function samples, where the database size satisfies
equation (9), an ensemble search algorithm requires only O(log2 N) invocations of the
objective function f . However, this result is not asymptotic with respect to the input size
of the GOP, due to the limitation imposed by equation (9).
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